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This article focuses on mathematical tasks as important vehicles for building 
student capacity for mathematical thinking and reasoning. A stratified 
random sample of 144 mathematical tasks used during reform-oriented 
instruction was analyzed in terms of (a) task features (number of solution 
strategies, number and kind of representations, and communication re- 
quirements) and (b) cognitive demands (e.g., memorization, the use of 
procedures with [and without] connections to concepts, the "doing of math- 
ematics'9"). Thefindings suggest that teachers were selecting and setting up the 
kinds of tasks that reformers argue should lead to the development ofstudents' 
thinking capacities. During task implementation, the task features tended to 
remain consistent with how they were set up, but the cognitive demands of 
high-level tasks had a tendency to decline. The ways in which high-level tasks 
declined as well as factors associated with task changes from the set-up to 
implementation phase were explored. 
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The mathematics reform movement posits an ambitious set of outcome 
goals for student learning. Documents published by the National Council 

of Teachers of Mathematics (1989,1991), the Mathematical Association of 
America (1991), and the National Research Council (1989) all point to the 
importance of students' developing deep and interconnected understand- 
ings of mathematical concepts, procedures, and principles, not simply an 
ability to memorize formulas and apply procedures. Increased emphasis is 
being placed not only on students' capacity to understand the substance of 
mathematics but also on their capacity to "do mathematics." In recent years, 
mathematics educators and philosophers have convincingly argued that full 
understanding of mathematics consists of more than knowledge of math- 
ematical concepts, principles, and their structure (e.g., Lakatos, 1976; Kitcher, 
1984; Schoenfeld, 1992). Complete understanding, they argue, includes the 
capacity to engage in the processes of mathematical thinking, in essence 
doing what makers and users of mathematics do: framing and solving 
problems, looking for patterns, making conjectures, examining constraints, 
making inferences from data, abstracting, inventing, explaining, justifying, 
challenging, and so on. Students should not view mathematics as a static, 
bounded system of facts, concepts, and procedures to be absorbed but, 
rather, as a dynamic process of "gathering, discovering and creating knowl- 
edge in the course of some activity having a purpose" (Romberg, 1992, 
p. 61). 

What types of instructional environments might reasonably be expected 
to produce these kinds of student outcomes? Most reformers agree that 
"classrooms must be communities in which mathematical sense-making of 
the kind we hope to have students develop is practiced" (Schoenfeld, 1992, 
p. 345). According to the Professional Standards for the Teaching of Math- 
ematics (NCTM, 1991), classrooms should be environments in which stu- 
dents are encouraged to discuss their ideas with one another, where 
intellectual risk-taking is nurtured through respect and valuing of student 
thinking, and where sufficient time and encouragement is provided for 
exploration of mathematical ideas. One also finds consistent recommenda- 
tions for the exposure of students to meaningful and worthwhile mathemati- 
cal tasks, tasks that are truly problematic for students rather than simply a 
disguised way to have them practice an already-demonstrated algorithm. In 
such tasks, students need to impose meaning and structure, make decisions 
about what to do and how to do it, and interpret the reasonableness of their 
actions and solutions. Such tasks are characterized by features such as 
having more than one solution strategy, as being able to be represented in 
multiple ways, and as demanding that students communicate and justify 
their procedures and understandings in written and/or oral form. 

This characterization of instructional environments for the development 
of mathematical thinking stands in sharp contrast to the ways in which most 
classrooms are currently organized and run. Most mathematics lessons 
consist of teacher presentation of a "mathematical problem" along with the 
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algorithm for solving it, followed by the assignment of a similar set of 
problems for students to work through individually at their seats (Porter, 
1989; Stodolosky, 1988). Students' work consists almost entirely of memo- 
rizing presented facts or applying formulas, algorithms, or procedures 
without attention to why or when it makes sense to do so. In this type of 
setting, "Doing mathematics means following rules laid down by the teacher; 
knowing mathematics means remembering and applying the correct rule 
when the teacher asks a question, and mathematical truth is determined 
when the answer is ratified by the teacher" (Lampert, 1990, p. 31). Class- 
rooms organized in this type of format do not provide the conditions 
necessary for the development of students' capacity to think and reason 
mathematically. Over time, students come to expect that there is one right 
method for solving problems, that the method should be supplied by the 
teacher, and that, as students, they should not be expected to spend their 
time figuring out the method or taking the responsibility for determining the 
accuracy or reasonableness of their work (Schoenfeld, 1992). 

Given the numerous calls for the establishment of instructional environ- 
ments characterized by an increased emphasis on problem solving, sense 
making, and discourse, a closer examination of the assumptions regarding 
how such environments lead to the desired student outcomes appears to be 
in order.' One model that could be used to examine how instruction relates 
to student learning outcomes (the student mediation model) specifies that 
teaching does not directly influence student learning but, rather, that 
teaching influences students' cognitive processes or thinking, which, in turn, 
influences their learning (Carpenter & Fennema, 1988; Wittrock, 1986). From 
this perspective, a mediating variable that is important to describe and 
examine is the nature of students' thinking processes in the classroom and 
how those processes are altered when teachers attempt to create enhanced 
instructional environments. Are authentic opportunities for students to think 
and reason created when teachers use tasks that are problematic, that have 
multiple solution strategies, that demand explanation and justification, and 
that can be represented in various ways? What kinds of thinking processes 
do these types of tasks set into motion? If students are not being set on the 
right cognitive track during classroom lessons, there is little reason to expect 
that scores on measures of learning outcomes will reflect enhanced under- 
standing or increased ability to think and problem solve. 

This article investigates enhanced instruction as a means of building 
student capacity for mathematical thinking and reasoning. The underlying 
premise is that students must first be provided with opportunities, encour- 
agement, and assistance to engage in thinking, reasoning, and sense-making 
in the mathematics classroom. Consistent engagement in such thinking 
practices should, in turn, lead to a deeper understanding of mathematics as 
well as the ability to demonstrate complex problem solving, reasoning, and 
communication skills on assessments of learning outcomes. 

The context for the present investigation consists of mathematics 
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classrooms that are participating in the QUASAR Project,2 a national educa- 
tional reform project aimed at fostering and studying the development and 
implementation of enhanced mathematics instructional programs for stu- 
dents attending middle schools in economically disadvantaged communities 
(Silver & Stein, 1996). The project is based on the premise that prior failures 
of poor and minority students were due to a lack of opportunity to 
participate in meaningful and challenging learning experiences rather than 
to a lack of ability or potential. Beginning in the fall of 1990, mathematics 
teachers at four geographically dispersed middle schools have been work- 
ing, in collaboration with resource partners from nearby universities, to 
provide instruction based on thinking, reasoning, and problem solving. Two 
additional middle schools were added in the fall of 1991. Two of the 
QUASAR schools serve student populations that are predominately African 
American; two serve primarily Hispanic student populations, and the other 
two schools serve ethnically diverse student populations. In two of the 
schools, the majority of students speak English as their second language. 

QUASAR's reform efforts are targeted at the school level. As such, all 
teachers who teach mathematics at QUASAR sites are involved in project 
activities. Although QUASAR teachers have received a broad array of staff 
development since the inception of the project, the teachers' educational 
and professional backgrounds prior to joining the project were typical of 
most middle school mathematics teachers (QUASAR Documentation Team, 
1993). The majority is elementary certified and has taken few, if any, 
mathematics courses beyond high school (other than mathematics teaching 
methods courses in college). At the time of the final year of instruction 
represented in the current study, the average years of teaching experience 
was slightly over 13 (the range was from one year's experience to over 20 
years' experience). Compared to the national average, QUASAR teachers are 
more ethnically diverse. 

Conceptual Framework 

Investigation of the relationship between instruction and students' thinking 
in project classrooms was guided by the conceptual framework shown in 
Figure 1. The framework proposes a set of differentiated task-related 
variables as leading toward student learning and proposes sets of factors that 
may influence how the task variables relate to one another. The present 
investigation focused on the variables that appear in the shaded areas. 

Mathematical Tasks 

The examination of instruction and thinking processes was framed by the 
concept of mathematical tasks, a close relative of academic tasks, a con- 
struct that has been extensively employed to study the connections between 
teaching and learning in classrooms more generally. As the first individual 
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MATHEMATICAL ATHEMATICAL 

TASK as represented in teacher in the implensent by 

curricular/instructional classroom. 
classroom STUDENT 

materials.*Task Features *Enacment of Task LEARNING 

*Cognitive Demands Features 

INFLUENCING SET INFLUENING 

Teacher Goals Classroorn Norms 

Teacher Subject 
Matter TeacherIntruto Habits & 

Teacher Knowledge of Student Larnig Habits & 

Figure 1. Relationship among various task-related variables and student 
learning. Shaded portions represent areas under investigation 

to view the curriculum as a collection of academic tasks, Doyle defined 
academic tasks as the products that students are expected to produce, the 
operations that students are expected to use to generate those products, and 
the resources available to students while they are generating the products 
(1983, p. 161). Doyle has suggested that an academic-task approach to 
classroom research constitutes a "treatment theory to account for how 
students learn from teaching" (p. 167, 1988). Although recognizing that other 
events and contexts influence student learning, he joins Shavelson, Webb, 
and Burstein (1986) in proposing that academic tasks serve as the proximal 
causes of student learning from teaching. "Tasks influence learners by 
directing their attention to particular aspects of content and by specifying 
ways of processing information" (Doyle, 1983, p. 161). From this perspec- 
tive, the mathematical tasks with which students become engaged determine 
not only what substance they learn but also how they come to think about, 
develop, use, and make sense of mathematics. Indeed, an important 
distinction that permeates research on academic tasks is the differences 
between tasks that engage students at a surface level and tasks that engage 
students at a deeper level by demanding interpretation, flexibility, the 
shepherding of resources, and the construction of meaning. 

The conception of mathematical task used in the present article is 
similar to Doyle's notion of academic task in that it includes attention to what 
students are expected to produce, how they are expected to produce it, and 
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with what resources. It is different from Doyle's, however, in terms of 
duration or length of the task. In this article, a mathematical task is defined 
as a classroom activity, the purpose of which is to focus students' attention 
on a particular mathematical idea. An activity is not classified as a different 
or new task unless the underlying mathematical idea toward which the 
activity is oriented changes. Thus, a lesson is typically divided into two, 
three, or four tasks rather than into many more tasks of shorter duration.3 

A central theme in academic-task research is the extent to which tasks 
can change their character once unleashed in real classroom settings. As 
shown by the rectangles in Figure 1, a task can be viewed as passing through 
three phases: first, as curricular or instructional materials; second, as set up 
by the teacher in the classroom; and third, as implemented by students 
during the lesson. The properties of tasks may be different during each of 
these phases (Doyle & Carter, 1984). This phenomenon is well-known to 
classroom ethnographers and to sociocultural researchers, as well as to those 
individuals who have done research on the nature of academic tasks. For 
example, Newman, Griffin, and Cole (1989) have provided extended ethno- 
graphic investigations surrounding the ways in which students' goals and 
their understanding of the objectives of the task can transform the task to 
the point that it is no longer the same as what was intended by the teacher 
at the outset. Teachers also can wittingly (or unwittingly) change the nature 
of tasks by stressing less- or more-challenging aspects of the tasks or by 
altering the resources available to students. 

As shown in Figure 1, tasks can be potentially transformed between any 
two successive phases. For example, the circle between the first two boxes 
suggests factors that may influence how the teacher actually sets up 
curricular/instructional tasks in the classroom. Although this area of the 
framework is not the focus of the present investigation, other studies have 
found differences between the objectives of curricular materials and the 
ways in which teachers have interpreted and set up the material. For 
example, studies have shown that teachers' knowledge of subject matter can 
influence the manner in which they use text materials (e.g., Stein & Baxter, 
1989). 

Task Set Up and Implementation 

This study focused on the relationship between task set up and task 
implementation. Task set up is defined as the task that is announced by the 
teacher. It can be quite elaborate, including verbal directions, distribution of 
various materials and tools, and lengthy discussions of what is expected. 
Task set up can also be as short and simple as telling the students to begin 
work on a set of problems displayed on the blackboard. Task implementa- 
tion, on the other hand, is defined by the manner in which students actually 
work on the task. Do they carry out the task as it was set up? Or do they 
somehow alter the task in the process of working their way through it? 
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At the task-set-up phase and also at the task-implementation phase, the 
mathematical tasks were examined in terms of two interrelated dimensions: 
task features and cognitive demands. The task features refer to aspects of 
tasks that mathematics educators have identified as important considerations 
for the engagement of student thinking, reasoning, and sense-making: the 
existence of multiple-solution strategies, the extent to which the task lends 
itself to multiple representations, and the extent to which the task demands 
explanations and/or justifications from the students. At the task-set-up 
phase, task features refer to the extent to which the task as announced by 
the teacher incorporates or encourages the use of each of these features. At 
the task-implementation phase, task features refer to the enactment of the 
features by students as they actually go about working on the task. Are 
multiple-solution strategies actually used? Do students actually produce 
mathematical explanations and justifications? The cognitive demands of the 
task during the task-set-up phase refer to the kind of thinking processes 
entailed in solving the task as announced by the teacher. These can range 
from memorization, to the use of procedures and algorithms (with or 
without attention to concepts or understanding), to the employment of 
complex thinking and reasoning strategies that would be typical of "doing 
mathematics" (e.g., conjecturing, justifying, interpreting, etc.). At the task- 
implementation phase, cognitive demands are analyzed as the cognitive 
processes in which students actually engage as they go about working on the 
task. Do students actually memorize facts and formulas? Do students actually 
engage in high-level thinking and reasoning about mathematics? 

The circle between task set up and task implementation in Figure 1 
identifies various types of factors that could potentially influence the way in 
which tasks are actually implemented in the classroom. These include 
classroom norms, task conditions, and teachers' and students' habits and 
dispositions. Classroom norms refer to established expectations regarding 
how academic work gets done, by whom, and with what degree of quality 
and accountability. Task conditions refer to attributes of tasks as they relate 
to a particular set of students (e.g., the extent to which tasks build on 
students' prior knowledge, the appropriateness of the amount of time that 
is provided for students to complete tasks). Teachers' and students' habits 
and dispositions refer to relatively enduring features of their pedagogical 
and learning behaviors that tend to influence how they approach classroom 
events. Examples include the extent to which a teacher is willing to let a 
student struggle with a difficult problem, the kinds of assistance that teachers 
typically provide students that are having difficulties, and the extent to which 
students are willing to persevere in their struggle to solve difficult problems. 
These classroom, task, and teacher/student factors are illustrations of the 
ways in which tasks can be shaped by the ambient classroom culture. 

Cognitively Demanding Tasks 

Of particular interest to mathematics reform are those instances in which 
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tasks start out as cognitively demanding but, during the course of implemen- 
tation, decline into somewhat less-demanding activities versus those in- 
stances in which tasks start out as cognitively demanding and remain so. 
Academic-task researchers have provided descriptions of ways in which 
high-level academic tasks can decline into less cognitively demanding 
activities as they are implemented. High-level tasks are often less structured, 
more complex, and longer than tasks to which students are typically 
exposed. According to Doyle and others, students often perceive such tasks 
as ambiguous and/or risky because it is not apparent what they should do 
and how they should do it. In order to manage this ambiguity and risk, 
students, it is argued, often urge the teacher to make such tasks more 
explicit, thereby reducing or eliminating the difficult, sense-making aspects 
of the task. In addition, task researchers have noted that high-level tasks are 
not typically associated with quick student entry and engagement, even 
work production, and smooth, well-ordered classroom management. Thus, 
they argue, the increased complexity of orchestrating classroom events can 
lead to teacher imposition of procedures that detract from the challenging 
aspects of the task. 

Tasks that begin as cognitively demanding do not always decline, 
however, and it is important to understand when and how such tasks remain 
challenging during the implementation phase. Along these lines, recent 
work in the cognitive psychology of instruction has begun to outline 
characteristics of instruction for the development of high-level thinking and 
reasoning skills (see Anderson, 1989, for a summary of such findings). 
Examples of factors that have been found to be associated with students' 
maintenance of steady effort and progress in the face of complex task 
demands include scaffolding, the modeling of high-level performance by the 
teacher and/or capable students, the making of conceptual connections, the 
careful selection of tasks that build on students' prior knowledge, the 
provision of appropriate amounts of time to explore ideas and make 
connections, the encouragement of student self-monitoring, and the pres- 
ence in the environment of a sustained press for explanation, meaning, and 
understanding. On the whole, however, it is fair to say that less is known 
about characteristics of instruction that foster high-level thinking than about 
instruction for the facilitation of basic knowledge and skills (i.e., direct 
instruction). 

In summary, the tasks used in mathematics classrooms highly influence 
the kinds of thinking processes in which students engage, which, in turn, 
influences student learning outcomes (as represented in the triangle in 
Figure 1). When employing the construct of mathematical task, however, 
one needs to be constantly vigilant about the possibility that the tasks with 
which students actually engage may or may not be the same task that the 
teacher announced at the outset. Be they enabling or constraining, one 
needs to acknowledge the influences of the complex environment of the 
classroom on the ultimate shape and form of the task. 
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Purpose of the Study 

The overall purpose of the present study was to examine and describe the 
nature of the mathematical tasks used in project classrooms. Using the 
conceptual framework as a guide, the study was organized to provide 
answers to three interrelated questions: 
(1) To what extent do tasks as set up by teachers include selected features 
that the mathematics education research and reform communities would 
view as associated with the development of students' capacity to think and 
reason mathematically? 
(2) To what extent do the tasks as implemented remain consistent with the 
ways in which they were set up? 
(3) For those tasks that were set up to place high-level cognitive demands 
on students, what factors were associated with (a) those instances in which 
the tasks were implemented in such a way that students did engage with the 
task at that level and (b) those instances in which the tasks were imple- 
mented in such a way that students did not engage with the task at that level. 

Methodology 

Data Sources 

Narrative summaries. Narrative summaries of classroom observations 
written by trained and knowledgeable observers formed the basis of the data 
used for our analysis. Each school year from Fall 1990 to Spring 1993, three 
3-day observation sessions (Fall, Winter, and Spring) were conducted in 
three teachers' mathematics classrooms at four project sites.4 An observer 
took detailed field notes focusing on the mathematics instruction and 
students' reactions to the instruction; simultaneously, a camera operator 
videotaped the lesson. Following the observations, the observer used both 
the videotaped lesson and his or her field notes to complete the project's 
Classroom Observation Instrument (COI).5 As part of that instrument, the 
observer provided descriptions and sketches of the physical setting of the 
room, a chronology of instructional events, and responses to questions 
associated with five themes: mathematical tasks, classroom discourse, the 
intellectual environment, management and assessment practices, and group 
work (if it occurred). 

In the COI, a mathematical task is defined as a segment of classroom 
work that is devoted to learning about a particular mathematical idea. The 
observers were instructed to segment the instructional time of each observed 
lesson into the main mathematical tasks with which students were engaged 
and to append artifacts associated with these tasks to the write-up. The two 
tasks that occupied the largest percentage of class time were designated as 
Task A and Task B. In the mathematical tasks section of the COI, the 
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observer described in detail the nature of these two tasks: their mathematical 
content, the learning goals of the teacher for each task, and the behaviors 
of the students as they engaged in these tasks. The observer also described 
the extent to which each task focused students' attention on procedural steps 
with or without connections to underlying concepts and on "doing math- 
ematics" (e.g., framing problems, making conjectures, justifying, explaining). 
In the remaining three sections of the COI, the observer considered all 
activities that occurred during the classroom lesson in their responses, often 
referring specifically to Task A or Task B. Only Task A of each observation 
was the focus of the analysis. The entire narrative summary for a classroom 
observation, however, was reviewed and considered in making coding 
decisions. 

Observer qualifications. The observers were selected on the basis of a 
set of qualifications that included a strong background in mathematics 
education, psychology, or a related field; a demonstrated competence in 
their ability to analyze instructional events from both pedagogical and 
mathematical content perspectives; prior experience observing classrooms; 
and their understanding of the ethnic or multicultural nature of the commu- 
nity at the site (many of the observers were residents of those communities). 
In some instances, Spanish-English bilingual skills were also required 
because the population included a high percentage of students whose native 
language was Spanish. 

A team of central project staff (including the authors of this article) 
conducted a 2-day training session for the observers or provided one-on-one 
on-site training. To ensure the validity of the write-ups, two members of the 
central project staff independently viewed a videotape of a randomly chosen 
observation for each observer, each season and independently critiqued the 
write-up of that observation. The two reviewers provided the observer with 
jointly constructed detailed feedback on the write-ups prior to the next 
observation cycle. 

Videotapes and artifacts. Videotapes of observations and/or additional 
artifacts from an observation were used as supplemental data sources on 11 
of the tasks (80/6). These sources were consulted when a coder determined 
that the written description of the observation did not provide sufficient 
information on which to base a decision. Viewing the videotape or review- 
ing the artifacts provided the necessary supplemental information that 
assisted the coder in making more accurate coding decisions. 

Sampling Procedure 

The present investigation used data from the four sites that had participated 
in the project for a full 3-year period by Spring 1993. That database consisted 
of 620 tasks (2 tasks x 310 observations). A stratified random sample was 
selected, using year, site, and teacher as stratification dimensions.6 Two 
teachers were selected from each site for each year on the basis of the grade- 
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level classes they taught and whether their classes were represented else- 
where in the sample (e.g., where possible, a teacher whose classes were not 
represented in the sample for 1990-1991 was selected in 1991-1992 or 
1992-1993). Two of the three observations from the fall, two of the three 
from the winter, and two of the three from the spring were randomly chosen 
for each of the selected teachers,7 (see Table 1). Thus, 12 observations were 
selected from each site for each year, resulting in 144 observations overall 
(12 observations x 4 sites x 3 years). In each of the observations, the task 
that accounted for the greatest amount of class time was used as the task 
for analysis (Task A).8 These 144 tasks constituted 23% of the entire data 
pool. 

This sampling procedure resulted in an equal distribution of tasks across 
seasons (48 per season), across sites (36 per site), and across years (48 per 
year). During the first year of the project (1990-1991), all observations 
occurred in sixth grade classrooms; during the second year of the project 
(1991-1992), the emphasis was on seventh grade classrooms and nearly all 
observations were at that grade level, with a few at the sixth grade level; 
during the final year of the project, the emphasis was on eighth grade 
classrooms, and, thus, the majority of observations were at that grade level, 
with a few in sixth and seventh grade classrooms. This distribution is 
reflected in our sample as follows: for 1990-1991, 100% of the tasks are from 
sixth grade classes; for 1991-1992, 96% are from seventh grade classes, and 
4% are from sixth grade classes; and, for 1992-1993, 71% of the tasks are 
from eighth grade classes, 17% from seventh grade classes, and 13% from 
sixth grade classes. Overall, 39% of the sample tasks are from sixth grade 
classes, 38% from seventh grade classes and 24% from eighth grade classes. 

Coding 

Coding procedure. The completed COIs which contained the 144 tasks 
described above were coded using a system designed specifically for the 

Table 1 
Example of Selected Observations for a Given Site for a Given Year 

1990-1991 
Site 1 

Teacher 1 Teacher 2 

Fall Obs. 1 Obs. 3 Obs. 2 Obs. 3 

Winter Obs. 2 Obs. 3 Obs. 1 Obs. 3 

Spring Obs. 1 Obs. 2 Obs. 1 Obs. 3 
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present study. The coding system was initially developed based on a review 
of the literature on academic tasks (Bennett & Desforges, 1988; Doyle, 1983; 
1988; Marx & Walsh, 1988) and the cognitive psychology of instruction 
(Anderson, 1989), the literature on mathematical thinking and problem 
solving (Grouws, 1992; Silver, 1985), and mathematics reform documents 
(NCTM, 1989, 1991), as well as on our knowledge of the project sites and 
their goals. The system was modified through the process of actually 
attempting to code COIs. Hence, the final coding system reflects important 
features of tasks as suggested by theory and prior research and also salient 
characteristics of the project and the data set. 

Nineteen coding decisions were made for each task. The codes were 
organized into 4 main categories: task description, task set up, task imple- 
mentation, and factors associated with decline or maintenance of high-level 
tasks. The descriptive codes included the number of minutes and percent- 
ages of class time devoted to the task, the type of resource(s) that served 
as the basis or idea for the task (i.e., textbook, innovative curricula, teacher- 
developed material), the type of mathematical topic that the task was about 
(conventional middle-school topic, reform-inspired topic, focus on math- 
ematical processes more than a particular topic), the context of the task, and 
whether or not the task was set up as a collaborative venture among 
students. 

The second category of codes was concerned with the set up of the task. 
In this phase of the coding, coders were instructed to refer to the task 
materials (provided as appendices to the COI write up) and to the task as 
specified by the teacher, both during her initial announcement of what 
students were to do and at any subsequent points during the task in which 
the teacher unilaterally provided additional specifications to guide students' 
approach to the task. Codes were assigned for task features and for the 
cognitive demands of the task. The features included the number of possible 
solution strategies, the number and kind of potential representations that 
could be used to solve the problem, and the communication requirements 
of the task (i.e., the extent to which students were required to explain their 
reasoning and/or justify their answers). The cognitive demands were clas- 
sified with respect to the following: memorization, the use of formulas, 
algorithms, or procedures without connection to concepts, understanding, 
or meaning; the use of formulas, algorithms, or procedures with connection 
to concepts, understanding, or meaning; and cognitive activity that can be 
characterized as "doing mathematics," including complex mathematical 
thinking and reasoning activities such as making and testing conjectures, 
framing problems, looking for patterns, and so on. These selections are not 
necessarily mutually exclusive; when the task appeared to call for more than 
one type of cognitive activity, coders were instructed to select the code that 
best described the majority of the task. 

The third category of codes represented the task as it was implemented. 
In this phase of the coding, coders were instructed to attend to the ways in 
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which students actually went about working on the task. Once again, codes 
were assigned for task features (i.e., solution strategies, representations, 
communication) and cognitive demands. When coding the features of the 
task as implemented, coders were instructed to infer the extent to which 
students appeared to be carrying out the various task features as stipulated 
in the set up (e.g., the extent to which they actually used single- vs. multiple- 
solution strategies, the extent to which they used and made connections 
among multiple representations, and the extent to which students actually 
produced explanations). When coding the cognitive demands of the task as 
implemented, coders were asked to make judgments about the kinds of 
cognitive processes in which the majority of the students appeared to be 
engaged. In other words, was there evidence that students actually em- 
ployed the cognitive processes that the task set up called for?9 

The final category of codes included judgments aboutfactors associated 
with task implementation. In this category, only selected tasks were coded: 
(a) those that were set up to require high levels of cognitive activity and were 
implemented in such a way that students did indeed engage in high levels 
of cognitive activity and (b) those that were set up to require high levels of 
cognitive activity but were implemented in such a way that students did not 
engage with the task at high levels. High level was defined as tasks that 
involved "doing mathematics" or the use of formulas, algorithms, or proce- 
dures with connection to concepts, understanding, or meaning. All other 
levels of cognitive demand and activities (i.e., memorization; the use of 
formulas, algorithms, or procedures without connection to concepts, under- 
standing, or meaning; codes designated as "other") were considered to 
represent lower levels of cognitive demand. For high-level tasks that 
remained so during implementation, coders were instructed to select as 
many as applied from a list of factors that could assist with the maintenance 
of tasks at high levels (e.g., the modeling of high-level performance by 
teachers or capable students, sustained press for justification, explanations, 
and/or meaning through teacher questioning, comments, and feedback; 
scaffolding [teachers or more capable students simplifying the task so that 
it could be solved while maintaining task complexity]; and the selection of 
tasks that build on students' prior knowledge). For high-level tasks that 
declined, coders selected possible reasons for the decline from a list that 
included the routinization of problematic aspects of the tasks (students press 
teacher to reduce task ambiguity or complexity by specifying explicit 
procedures and/or teacher takes over difficult pieces of the task); the shifting 
of emphasis from meaning, concepts, or understanding to the accuracy and 
completeness of answers; the lack of sufficient time for students to wrestle 
with the demanding aspects of the tasks; and classroom management 
problems that prevent sustained engagement in high-level cognitive activi- 
ties. 

For most questions, coders had the option of selecting "other" and 
writing a phrase to specify what was meant by "other." When coding the 
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implementation phase of the cognitive demands question (the cognitive 
processes in which students actually engaged), coders independently recog- 
nized the need for a new code to describe a frequently observed manner 
of implementing "doing mathematics" tasks (the manner of implementation 
did not fit into any of the existing codes). The coders agreed to use the string 
of words, inadequate implementation of "doing mathematics, " to describe 
this mode of implementation, and hence the word string was written with 
the "other" code when appropriate. The use of this uniform text string 
allowed the authors to easily identify this form of cognitive activity during 
the analysis phase. 

Coder assignments. A stratified random sampling procedure was used 
to assign observations to four coders to ensure that each coder had 
responsibility for coding about the same number of observations from each 
site and about the same number from each year. Eight to 10 tasks from each 
site and 12 tasks from each year were assigned to each coder. Circumstances 
toward the end of the coding period required that six of one of the coder's 
tasks be equally distributed among the remaining three coders. This resulted 
in one coder coding 6 1992-1993 tasks (instead of 12) and three coders 
coding 14 1992-1993 tasks (instead of 12). In addition, this change resulted 
in one coder coding only 4 tasks from one site while another coded 12 tasks 
from that same site (instead of the 8-10 originally planned). 

Double coded tasks. To ensure a representative subset were double 
coded, a stratified random sampling procedure was used to identify 36 tasks 
(25% of the sample) for intercoder reliability purposes. Three tasks from 
each site for each year (3 tasks x 4 sites x 3 years) were independently coded 
by two individuals. The 36 tasks included at least one task from each teacher; 
they were distributed across seasons such that 10 tasks were from the fall, 
14 from the winter, and 12 from the spring; they were distributed across 
grade levels such that 12 were sixth grade tasks, 14 were seventh grade, and 
10 were eighth grade. Consensus coding was scheduled systematically over 
a 5-week period such that each coder independently coded from 2-10 tasks 
between consensus sessions. Consensus was reached by the two coders on 
all disagreements. 

Intercoder reliability. Intercoder reliability ranged from 53% to 100% 
with an average of 79%. We consider this percentage of agreement to be 
sufficiently high enough to warrant confidence in our conclusions. The 
inferential nature of the coding decisions and the fact that 10-15 pages of 
written text of the COI were brought to bear on the decision-making process 
made the coding task complex and intellectually demanding. The frequent 
consensus sessions interspersed among individual coding minimized oppor- 
tunities for individual coders to drift away from the shared understanding of 
the meaning of the codes. 

Analysis Procedures 

Along with appropriate identification codes (e.g., teacher, site, year, season, 
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observation date, grade level), codes for the four categories described earlier 
under "Coding Procedure" were entered into a 4th Dimension Version 3.0.5 
(4th Dimension, 1985-1993) computer database. Written text that accompa- 
nied codings of "other" were also entered when appropriate. Using Systat 
5for the Macintosh (Systat, 1989), initial analysis reported the frequencies 
and percentages for each possible code across all 144 tasks across all 3 years. 
These results were reviewed with respect to patterns that emerged, potential 
explanations for the results, and possible approaches to reporting the data. 

In order to analyze the relationships between the set up and implemen- 
tation of the features and the cognitive demands of the tasks, four matrices 
were generated: three of the matrices organized information related to the 
set-up and implementation versions of questions about solution strategies, 
representations, and communication; one of the matrices organized informa- 
tion related to the set-up- and implementation-versions of the questions 
about cognitive demands. For each pair of items, the row headings listed the 
possible responses for task set up; the column headings listed the possible 
responses for task implementation. In each cell, the appropriate frequencies 
and percents were recorded. The percentages in the cells along the diago- 
nals of each matrix reflected the extent of agreement between the way in 
which the task was set up and the way in which it was implemented (e.g., 
the percentage of tasks in which students used multiple-solution strategies 
when the task as set up allowed for multiple-solution strategies). The off- 
diagonal cells reflected the extent to which aspects of the task as set up 
changed when implemented and what those changes were (e.g., the 
percentage of tasks in which students used single-solution strategies when 
the task as set up allowed for multiple-solution strategies). In addition, a 
listing of text descriptions associated with the code of "other" for the 
cognitive demands questions was printed out and examined. The four 
matrices and the text listings were used as the bases for discussions about 
the identification, meaning, and interpretation of the patterns and the 
relationships between task set up and implementation that emerged. 

Results 

The discussion of results is presented in four main sections. First, a 
descriptive summary of the basic attributes of the mathematical tasks used 
in project classrooms is provided. The next three sections address each of 
the research questions. Findings related to the extent to which the tasks as 
set up by teachers included the kinds of features and cognitive demands that 
are typically associated with the development of students' ability to think 
and reason mathematically are presented. This is followed by a discussion 
of the findings related to the extent to which the implementation of the 
mathematical tasks remained consistent with the manner in which the tasks 
were set up. The section concludes with a discussion of the results of 
analyses that explored the factors that appeared to be associated with high- 
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level tasks that (a) declined into less demanding classroom activity and (b) 
remained at high levels during implementation. 

Description of Mathematical Tasks 

The 144 mathematical tasks that were coded ranged from 10 to 51 minutes, 
with an average length of 24 minutes. On average, a task comprised 52% of 
the total instructional time of the given mathematics lesson. Thus, project 
teachers appeared to be devoting sustained periods of classroom time to 
academic work for the purpose of developing student facility with a 
particular mathematical idea. 

Resources that served as the basis or idea for the tasks were distributed 
among basal textbooks, commercial innovative curricula, site- or teacher- 
developed activities, and commercial supplemental resource books. The 
resource most often used was material developed by the site or teachers 
themselves, with 39% of the tasks being created by project participants. 
Commercial innovative curricula, such as The Middle Grades Mathematics 
Project (Fitzgerald, Winter, Lappan, & Phillips, 1986; Schroyer & Fitzgerald, 
1986) were used nearly as often (for 30% of the tasks). It should be noted, 
that, when the project began in Fall 1990, there were fewer commercial 
innovative curricula on the market than there are now. Another resource 
frequently used as a basis for tasks was commercial supplemental resource 
books; workbooks such as Make It Simpler (Meyer & Sallee, 1983) accounted 
for 19% of the tasks. Finally, 11% of the tasks were based on regular textbook 
series. 

Over half of the task topics were judged to be reform-inspired, meaning 
that they were topics that have not typically enjoyed center stage in more 
traditional middle-school mathematics programs. Fifty-one percent of the 
topics fell into the following categories: statistics, algebra, geometry, patterns 
and functions, and probability. Most of the remaining tasks (42% of the total) 
were more conventional in character (e.g., fractions, whole number opera- 
tions, changing from percents to decimals to fractions). Seven percent of the 
tasks were judged to be focused on mathematical process more so than on 
a mathematical topic. The majority of these process-focused tasks were 
driven by an emphasis on problem solving as skill; a few focused on group 
work skills. 

The majority of the tasks (63%) had no "real-life" contexts;'0 rather, they 
were situated totally in the abstract world of mathematics. Twenty-six 
percent of the tasks did refer to real-life objects or events, while 12% were 
found to utilize both abstract and real-world contexts. Finally, the majority of tasks (69%) were set up in such a way that students could use one another 
as resources. Either students were explicitly encouraged to work with one 
another, or the classroom norms were such that it was evident that group or pair work was sanctioned and/or expected. In 30% of the tasks, students 
were either told to work alone, or they participated in whole-class discus- 
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sions in which students were expected to contribute as individuals. This 
contrasts sharply with conventional mathematics classrooms in which stu- 
dents typically work independently. 

Task Set Up 

Figures 2 and 3 illustrate the extent to which the mathematical tasks as set 
up by project teachers possessed the kinds of features and cognitive 
demands that mathematics education researchers and reformers would 
identify as being associated with the development of student capacity to 
think and reason mathematically. 

As shown in Figure 2, the tasks tended to embody the kinds of features 
that reformers have suggested should be used in classroom instruction if the 
goal is to produce student learning outcomes such as the ability to under- 
stand mathematics and to think and reason in complex ways. Approximately 
two thirds of the tasks could be solved in multiple ways, whereas about one 
third lent themselves to only one solution path. The inclusion of many tasks 
that have multiple-solution strategies would be seen as one way of helping 
students to develop the view that mathematics involves making decisions 
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about how to go about solving problems, not simply employing teacher- 
supplied procedures. Similarly, two thirds of the tasks were set up to include 
the use of multiple representations, while about one third were set up as 
tasks that were to be solved using only one representation. Although more 
representations do not necessarily lead to greater understanding, numerous 
cognitive advantages associated with the establishment of links among 
various ways of representing a problem have been proposed. Finally, Figure 
2 shows that the majority of the tasks (61%) were set up to include the 
requirement that students produce mathematical explanations or justifica- 
tions. This represents a fairly radical departure from conventional classrooms 
in which tasks are generally set up to require only an answer. Although 
teachers in traditional classrooms may ask to "see students' work," this 
usually means a display of procedural steps used to arrive at an answer, not 
an explanation or justification. 

Figure 3 illustrates the types of cognitive demands that the tasks were 
set up to require of students. 

As shown in the figure, nearly three quarters of the tasks (74%) were 
set up to demand that the students engage in high-level cognitive pro- 
cesses--either the active "doing of mathematics" (40%) or the use of 
procedures with connection to concepts, meaning, or understanding (34%). 
These findings suggest that project teachers were attempting to develop their 
students' capacities to engage deeply with the mathematics they were 
learning. Eighteen percent of the tasks demanded the use of procedures 
without connections to concepts, meaning, or understanding. In this regard, 
it is important to note that mathematics educators agree that some practice 
on routine skills, as well as thoughtful inquiry into complex problems, is 
needed. Consequently, all classroom work on procedures, even if uncon- 
nected to concepts or understanding, should not necessarily be viewed as 

100% 

90% 

80% 

70% 

60% 

50% 
40% (n=58) 

40% 34% (n=49) 
30% 

20% 18% 
(n=26)I 

10% 2% (n=3) 1% (n=2) 3% (n=5) 
0% 

Non- Memorization Procedures Procedures Doing Other 
Mathematical without with Mathematics 

Connections Connections 

Figure 3. Task set up: Cognitive demands 

472 



Math Tasks 

negative. The challenge is to achieve some mixture of routine skill and 
understanding and, even more difficult, to integrate procedural skills with 
high-level thinking. Returning to Figure 3, only two tasks out of 144 were 
classified as demanding memorization, and only three tasks were judged to 
require no mathematical cognition. 

Overall, the above findings suggest that project teachers were selecting 
and setting up the kinds of tasks that most reformers would argue should 
lead to the building of students' capacities to think and reason about 
mathematics in complex ways. The features of the tasks embodied many of 
the characteristics that should lead students to develop a more intercon- 
nected, dynamic, and flexible view of the domain. And the cognitive 
demands should direct students' attention to complex and meaningful ways 
of processing mathematical information. 

Task Implementation 

In this section, discussion focuses on the extent to which the implementation 
of the mathematical tasks remained consistent with the ways in which the 
tasks were set up. Tables 2, 3, and 4 illustrate the ways in which the task 
features (number of solution strategies, number and kind of representations, 
and communication features) changed or remained the same from set up to 
implementation. Table 5 reports similar information for the cognitive de- 
mands of the task. Percentages in each table are based on row totals (i.e., 
the sum of row percentages equal 100%). 

Solution strategies. Table 2 shows the relationship between the number 
of solution strategies of tasks as they were set up and the number of solution 
strategies actually used during implementation. The bold numbers in the 
diagonal represent the tasks that remained consistent from task set up to task 
implementation. 

As the percentages on the diagonal indicate, there was an overall high 
consistency between task set up and task implementation. Most notably, 
87% of the tasks that were set up as single-method tasks did indeed lead to 
students' use of a single-solution strategy during the implementation phase. 

Table 2 
Change in Number of Solution Strategies From Set Up 

to Implementation 

Implementation 

Set up Single Multiple Cannot discern 

Single (n = 46) 87% (40) 11% (5) 2% (1) 
Multiple (n = 97) 12% (12) 69% (67) 19% (18) 
Cannot discern (n = 1) 0 100% 0 
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Tasks that were set up to encourage the use of multiple-solution strategies 
had a somewhat less consistent relationship to implementation: Students 
were inferred to have actually used multiple-solution strategies for 69% of 
tasks that were set up to encourage multiple-solution strategies, suggesting 
that it may be more difficult to keep multiple approaches alive during the 
implementation phase. 

The percentages representing the number of solution strategies used 
during implementation need to be interpreted with caution, however, given 
the relatively high percentage of "cannot discern" (19%---see Table 2, row 
2, column 3). It can be confidently stated that at least 12% of the tasks that 
were set up to encourage multiple strategies ended up being solved using 
a single-solution strategy. However, more tasks may have dropped to single- 
solution strategy; equally plausible, however, is that more tasks may have 
remained at the multiple-strategy level. Given the high number of "cannot 
discerns," it is impossible to know. 

Representations. Table 3 illustrates the relationship between the number 
and kind of representations encouraged by the task set up and the number 
and kind of representations that were used during task implementation. 

Once again, the bold figures in the diagonal suggest overall high 
consistency between how the representational aspects of tasks were set up 
and how they actually were enacted during implementation. Tasks that 
began as requiring a single representation (symbolic or nonsymbolic)" 
generally were implemented using only a single representation. Similarly, 
students generally used multiple representations for tasks that were set up 
to encourage or request the use of more than one representation. Thus there 
does not appear to be much decline in numbers of representations used 
from the task-set-up phase to the task-implementation phase. The high 
degree of consistency for the representational aspects of tasks is especially 

Table 3 
Change in Number and Kind of Representations From Set Up 

to Implementation 

Implementation 

Single- Single- Cannot 
Set up Symbols only Nonsymbolic Multiple discern 

Single-Symbols onlya (n = 23) 87% (20) 4% (1) 0 9% (2) 
Single-Nonsymbolicb (n = 25) 0 88% (22) 12% (3) 0 
Multiple (n = 96) 1% (1) 4% (4) 88% (84) 7% (7) 
Cannot discern (0) 0 0 0 0 

"aRepresentations that are composed entirely of numerals, mathematical symbols, and 
mathematical notation. 
bRepresentations that are either entirely nonsymbolic (most often manipulatives, diagrams, 
or pictures) or representations that incorporate both symbols and nonsymbols. 
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noteworthy given the fact that the majority of the 144 sampled tasks started 
out as multirepresentational. As noted under task set up, two thirds of the 
sampled tasks required that students use more than one representation. 

As stated earlier, however, more representations do not necessarily 
translate into deeper understanding. The crucial factor is whether and how 
representations become connected or linked to one another. For the 84 tasks 
(Table 3, row 3, column 3) that began as multiple-representation tasks and 
remained so during implementation, 69 (82%) were found to have incorpo- 
rated some connections between at least two different representations. Thus, 
evidence exists that students in project classrooms were using or being 
exposed to not only multiple representations per se but also representations 
that were linked to one another. Although the meaningfulness of the 
linkages was not always deep, the fact that a majority of tasks were 
implemented in such a way to include connected, multiple representations 
illustrates that the instruction in project classrooms went far beyond total 
reliance on symbolic manipulations. 

Communication. The extent to which the communication requirements 
of tasks actually translated into the production of explanations and justifi- 
cations by students is illustrated in Table 4. 

As shown in the first cell of the table, tasks that were set up to require 
no or few explanations and justifications did not change much during 
implementation: Students produced no or few explanations to the majority 
(82%) of tasks that did not require them. Requiring explanations as part of 
the task at set up, however, did not necessarily guarantee that explanations 
were produced during implementation. In 23% of the cases in which the task 
set up required students to explain or justify their thinking, no or few 
explanations were actually produced during the implementation phase. 
Thus, it appears that requesting explanations as part of the task does not 

Table 4 
Change in Communication Requirements From Set Up 

to Implementation 

Implementation 

Set up 

No or few Mathematical Explanations, but 
explanations/ explanations/ nonmathematical or 
justifications justification nonsupportive 

produced produced of answer 

No or few explanations/ 
justifications required 82% (46) 13% (7) 5% (3) 
(n = 56) 

Mathematical explanation/ 
justification required 23% (20) 74% (65) 3% (3) 
(n = 88) 
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automatically guarantee that student explanations will be produced as the 
task unfolds. 

Across all 144 tasks, 72 tasks (or 50%) were implemented in such a way 
that it was inferred that the majority of students were explaining and 
justifying their thinking. Once again, this finding stands in contrast to 
conventional classrooms in which completing the task most often means 
supplying the correct answer. 

Cognitive demands. The extent to which students' actual cognitive 
processing during implementation remained consistent with cognitive de- 
mands of tasks as they were set up is the focus of Table 5. 

An overview of Table 5 reveals a tendency for the cognitive demands 
of tasks to stay the same or to decline from task set up to task implemen- 
tation. The cognitive demands of tasks were observed to increase in only 
two of the 144 cases (row 2, column 5; row 3, column 4). Although it is 
plausible that a task may become more demanding during implementation 
than it was originally set up to be, this was found to be highly unusual. 

A second general observation is that, the higher the cognitive demands 
of tasks at the set-up phase, the lower the percentage of tasks that actually 
remained that way during implementation. For example, the vast majority 
(96%) of tasks that were set up to require the use of procedures without 
connection to concepts, meaning, or understanding were implemented in 
such a way that students used algorithms, formulas, or procedures without 
attention to underlying concepts or rationales. On the other hand, tasks that 
were set up to require higher level thinking, such as the use of procedures 
with connection to concepts, meaning, or understanding, were more likely 
to decline during implementation. Over half (53%) of the tasks that were set 
up to require the use of procedures with meaningful connections failed to 
keep the connection to meaning alive during implementation. Similarly, 
there was a decline during the implementation phase of tasks that were set 
up to require that students engage in sustained thinking, reasoning, and the 
"doing of mathematics." Students were observed to actually engage in these 
types of cognitive processes during implementation in only 38% of these 
tasks. Hence, it appears as though follow-through during the implementa- 
tion phase is most difficult for those kinds of tasks that reformers, philoso- 
phers, and scholars have identified as essential to building students' capaci- 
ties to engage in the processes of mathematical thinking. 

The manner in which high-level tasks declined is worthy of comment. 
The majority of tasks that were set up to require the use of procedures with 
meaningful connections declined to tasks in which procedures were used, 
but without connection to concepts or meaning (530/---row 4, column 3). 
Thus, it appears fairly easy for students to slip into the rote application of 
formulas and algorithms as they actually work their way through these types 
of tasks. Tasks that were set up to encourage the "doing of mathematics" 
(i.e., as requesting that students engage in such mathematical processes as 
framing and solving problems, looking for patterns, and making and testing 
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conjectures), however, declined in a variety of ways. Fourteen percent of 
these tasks declined into the use of procedures without meaningful connec- 
tions; 17% declined into nonmathematical activity; 26% declined into "other" 
(see row 5). 

The decline of complex, open-ended tasks into proceduralized routines 
has been well documented in the academic-task literature; our findings bear 
this tendency out, although not to the extent that one might have expected 
(only 14% of our sample declined in this way). The finding that 17% of the 
"doing mathematics" tasks ended up as tasks in which no or very little 
mathematical cognition occurred is surprising, however, and worthy of 
continued investigation. During the implementation phase, the total number 
of tasks that involved little or no mathematical cognitive activity was only 
14. Of these, 10 began as tasks that required students to think and reason 
in complex ways. 

The decline of "doing mathematics" tasks into "other" is more informa- 
tive than it may at first appear. Of the 15 tasks that were classified as "other" 
during the implementation phase, 13 fell into the emergent code, "inad- 
equate implementation of doing mathematics." This emergent code repre- 
sents a characteristic pattern of decline that was independently noted (and 
subsequently discussed) by the coders/authors (see p. 14). Such declines 
were marked by motivated student engagement, well-intentioned teacher 
goals for complex work, and well-managed work flow. The cognitive 
activity, however, was not at a high enough level to be characterized as 
engagement in complex mathematical thinking and reasoning. Students 
explored, discussed, and attempted to make connections, but they missed 
the important and central mathematical substance. Overall, students failed 
to adequately engage in the process of mathematical thinking, and, perhaps 
more important, their teachers were unable to assist them to perfom at these 
higher levels. We came to label this type of decline unsystematic explora- 
tion. 

Overall, the above findings suggest that students were able to imple- 
ment the task features in a fairly consistent manner but that the cognitive 
demands of tasks often declined from set up to implementation. The coding 
for cognitive demands of tasks represented a comprehensive judgment 
regarding the entire task, while the coding for each task feature was more 
componential in nature (i.e., each task feature was one of several features 
that, when considered together, composed a worthwhile and meaningful 
task). As such, the differential levels of success (with respect to implemen- 
tation of task features vs. implementation of cognitive demands) were 
understandable. Implementing tasks such that their overall demands remain 
high appears to be more difficult than faithful implementation of any one 
selected feature of a task. 

Factors Associated With How High-Level Tasks Were Implemented 
In this section, a general overview is presented of the kinds of factors that 

478 



Math Tasks 

were found to be associated with high-level tasks that declined into less 
demanding cognitive classroom activity and high-level tasks that remained 
at high levels during implementation. 

Figure 4 presents an overview of the kinds of factors associated with 
those tasks that declined. If a task was judged to have required high-level 
cognitive thinking at the set-up phase but to have been implemented in such 
a way that students did not actually engage in high-level thinking and 
reasoning, coders were instructed to select as many factors as applied from 
a list of possible classroom, teacher, and student factors that may have been 
associated with the decline. The bars in Figure 4 identify the percentage of 
tasks in which each particular factor was judged to be an influence in the 
decline. 

Overall, 61 tasks exhibited a decline from the set-up phase to the 
implementation phase. A total of 155 factors was selected across these 61 
tasks, meaning that, on average, approximately 2.5 factors were selected as 
influencing the decline for each task. As shown in Figure 4, the factor most 
often chosen (i.e., in 64% of the tasks) was that the problematic aspects of 
the task somehow became routinized, either through students' pressing the 
teacher to reduce task ambiguity and complexity by specifying explicit 
procedures or steps to perform or by teachers' taking over the challenging 
aspects of the task and either performing them for the students or telling 
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them how to do them. In many instances, teachers appeared to find it 
difficult to stand by and watch students struggle, and they would step in 
prematurely to relieve them of their uncertainty and (sometimes) emotional 
distress at not being able to make headway. All too often, however, teachers 
would do too much for the students, taking away students' opportunities to 
discover and make progress on their own. 

Another factor that was often selected as contributing to decline (for 
61% of the tasks) was student failure to engage in high-level activities due 
to lack of interest, motivation, or prior knowledge. Although this factor spans 
a variety of reasons, the reasons all relate to the appropriateness of the task 
for a given group of students. The preponderance of this factor points to the 
importance of teachers' knowing their students well and making intelligent 
choices regarding the motivational appeal, appropriate difficulty level, as 
well as the degree of task explicitness needed to move their students into 
the right cognitive space so that they can actually make progress on the task. 

Figure 4 also suggests that teachers had tendencies to shift the focus 
during the implementation phase from solution processes, meaning, con- 
cepts, and understanding to the correctness or completeness of the answer 
(for 44% of the tasks that declined) and to provide either too little or too 
much time (for 38% of the tasks that declined). Most often, a quick pace was 
observed to create havoc with opportunities for sustained thinking and 
exploration of mathematical ideas. 

Perhaps the most surprising finding in this area is that classroom 
management problems were judged to be an influencing factor in only 18% 
of the tasks that declined. The literature on academic tasks has suggested 
that high-level tasks are often associated with problems in work flow and 
classroom management (Doyle, 1988). Moreover, conventional wisdom 
suggests that using complex thinking tasks with students in urban schools 
(where behavior problems and inadequate preparation in basic skills are 
presumed to be prevalent features of the student body) is a prescription for 
out-of-control classrooms. On the contrary, our findings suggest that stu- 
dents attending urban schools in disadvantaged neighborhoods can work on 
high-level tasks without becoming disruptive and nonproductive. 

Figure 5 presents an overview of the kinds of factors associated with 
those tasks that were set up to place high-level cognitive demands on 
students and that remained that way during the implementation phase. If a 
task was judged to require high-level cognitive thinking at the set-up phase 
and to have been implemented in such a way that the majority of students 
actually engaged in high-level cognitive processing, coders were instructed 
to select as many factors as applied from a list of possible factors that may 
have been associated with assisting students to perform at high levels during 
the implementation phase. The bars in Figure 5 identify the percentage of 
tasks in which each particular factor was judged to be an influence in 
maintaining high levels of cognitive activity. 

Overall, 45 tasks were judged to have been set up as high level and to 
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Figure 5. Percentage of tasks in which factor was judged to be an 
influence in assisting students to engage at high levels (total number of 
tasks = 45). Percentages total more than 100 because more than one 
factor was typically selected for each task 

have remained so during implementation. A total of 178 factors was selected 
across these 45 tasks, meaning that, on average, approximately four factors 
were selected as assisting the maintenance of high-level cognitive activity for 
each task. The factor most often chosen (in 82% of the tasks that remained 
at high levels) was the task built on students' prior knowledge. Apparently, 
pitching tasks to appropriate difficulty levels so that they allow students to 
utilize prior relevant knowledge is an extremely important feature for 
helping to ensure that tasks will be implemented in the way in which they 
were intended. For 71% of the tasks that remained at a high level, providing 
the appropriate amount of time was judged to be an important feature in the 
success of the task. This factor most often was chosen to indicate that the 
teacher gave students sufficient time to explore, emphasizing thoughtful 
inquiry over speed and quantity of work. 

Another factor that was judged to be present in many of the tasks that 
remained at high levels (in 71% of the tasks) was that competent perfor- 
mance was modeled by the teacher or by a capable student. This often came 
in the form of students' presenting their solutions on the overhead projector. 
In many of the cases where complex thinking and reasoning were occurring, 
such presentations modeled the use of multiple representations, meaningful 
exploration, and appropriate mathematical justifications; often successive 
presentations illustrated multiple ways of approaching a problem. In 64% of 
the tasks that remained at high levels, a sustained press for justifications, 
explanations, and meaning was evident through teacher questioning, com- 
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ments, and feedback. Clear and consistent messages were sent to students 
that explanations and justifications were as much a part of classroom 
mathematical activity as were correct answers. Finally, evidence of scaffold- 
ing was found in 58% of the tasks that remained at high levels. These 
involved cases in which the teacher (and sometimes a more capable student) 
provided assistance so students could successfully complete a task; how- 
ever, the assistance was not such that it took away from the overall challenge 
or complexity of the task. Rather, the complexity was maintained and 
assistance was gauged to be just enough to allow the students to maintain 
forward progress. 

In summary, Figures 4 and 5 begin to provide a picture of the ways in 
which the instructional environments of project classrooms shaped the 
manner in which high-level tasks were implemented. The findings about the 
process of decline point to the importance of teachers maintaining a focus 
on mathematical thinking processes, all the while assisting (but not 
overassisting) their students. The findings about classroom supports for the 
maintenance of high-level activity are noteworthy from the standpoint of the 
number of them that appear to be operating in those tasks that were judged 
to truly engage students in mathematical thinking and reasoning (i.e., on 
average, 4 per task). In most of these tasks, the classroom environments 
were characterized by a wide variety of supports that enabled students to 
accept and take on challenges in productive ways. 

Discussion 

Instruction in Project Classrooms: Implications for Reform 

The present study's findings strongly suggest that project teachers have been 
successful in selecting and setting up the kinds of mathematical tasks that 
have been viewed as leading to high-level student learning outcomes. The 
vast majority of tasks that were used in this representative sample of project 
classrooms possessed characteristics that set them apart from typical math- 
ematics classrooms as described in the literature (e.g., Porter, 1989; Stodolsky, 
1988). Students were more apt to be working from innovative materials and/ 
or from teacher-developed materials than from a textbook series; they were 
likely to be engaged with statistics, geometry, or some other reform-inspired 
topic, and they were very often found to be working in pairs or groups. 
Moreover, the majority of the tasks that were set before them encouraged 
the use of multiple-solution strategies, multiple representations, and re- 
quired that they explain or justify how they arrived at their answers. Finally, 
three quarters of the tasks were set up to demand that students engage in 
rather sophisticated mathematical thinking and reasoning--either connect- 
ing procedures to underlying concepts and meaning or tackling complex 
mathematical problems in novel ways. 

With respect to task implementation, the findings have revealed that 
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project teachers and students have also experienced fairly high levels of 
success in maintaining certain features of tasks that have been seen as crucial 
to building students' thinking and reasoning capacities. When preceded with 
the appropriate set up, students were found to actually use multiple-solution 
strategies and multiple representations and to produce explanations and 
mathematical justifications in the majority of cases. On the other hand, 
success was not as forthcoming with respect to maintaining overall high- 
levels of cognitive processing. While the overall consistency between task 
set up and task implementation was 69%, 88%, and 74% for multiple-solution 
strategies, multiple representations, and the production of explanations 
respectively, the consistency for high-level cognitive demands was 42%. 
Moreover, as noted in the results section, the higher the demands that a task 
placed on students at the task-set up phase, the less likely it was for the task 
to have been carried out faithfully during the implementation phase. Indeed, 
the kinds of tasks that scholars and reformers have suggested as most 
essential for building students' capacities to think and reason mathematically 
are the very tasks that students had the most difficulty carrying out in a 
consistent manner. These findings are not startling; one would expect higher 
level tasks to be most vulnerable to decline. The findings are noteworthy, 
however, because they provide an empirical basis for these expectations and 
assumptions. As such, the findings may form the basis for justifying staff 
development efforts that will help teachers to implement tasks that encour- 
age mathematical reasoning and sense-making. 

The findings related to factors associated with the decline and mainte- 
nance of high-level demands from the task-set-up phase to the task- 
implementation phase are ripe for further exploration. In the present article, 
factors associated with all types of decline were reported together. Other 
analyses have explored the relative prevalence of factors in different types 
of decline. For example, Henningsen and Stein (in press) examined the 
kinds of factors associated with three different ways in which the "doing 
mathematics" tasks were observed to decline (i.e., into proceduralized 
thinking, into no mathematical activity, and into "unstystemized explora- 
tion"). Each of these types of decline was associated with a fairly distinct 
profile of factors. Henningsen and Stein (in press) used these factor profiles 
to identify specific mathematics lessons from the project's database. These 
lessons were then written up as cases to illustrate prototypical types of 
decline; a case illustrating factors related to the maintenance of high-level 
activity was also identified and written up. Such cases will provide much- 
needed, empirically generated details regarding specific ways in which 
implementing instructional reform may be thwarted and specific ways in 
which students and teachers can be assisted to develop classroom environ- 
ments in which teachers and students work together on challenging and 
worthwhile mathematical tasks. 

Finally, follow-up studies to the present investigation have extended the 
shaded area of Figure 1 to include the assessment of student learning 
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outcomes. For a description of the extent to which various levels of 
mathematical tasks used in the classroom appear to be associated with 
differential degrees of student learning, readers are referred to Stein and 
Lane (in press) and Stein, Lane, and Silver (1996). 

Implications for Research 

With respect to research issues, it seems appropriate to revisit the conceptual 
framework. Overall, the framework served as a useful guide for navigating 
through the thick mazes of substantial quantities of qualitative data. Class- 
rooms are complex environments in which most features are deeply inter- 
related. The framework used in the present study simplified the environment 
so that the investigators could take hold of it and learn something about 
what was happening. In this regard, the framework served as a heuristic, not 
as an indelible account of classroom events. In particular, the construct of 
mathematical task was found to be a useful focusing device--one that 
served to highlight mathematical content and processes and how they were 
being dealt with in project classrooms. The distinction between task set up 
and task implementation was also found to be useful because it provided 
a way to separate different phases of classroom activity--phases that most 
experienced classroom observers have always known have the potential to 
vary widely. The explication of factors that influence task implementation 
has also-been useful, although the list needs to be expanded and made more 
conceptually distinct, especially with respect to ways in which those factors 
overlap with and also remain differentiated from task implementation. 

The data on which this study was based were generated as part of the 
documentation effort of the QUASAR Project. Although that effort collected 
a wide range of data, the COI write-ups (as described in the methodology 
section of this article) formed the heart of the project's efforts to systemati- 
cally describe and examine instruction in project classrooms. Because 
project staff were committed to a view of teaching and learning as highly 
contextualized, the instrumentation for classroom observations was de- 
signed to provide rich accounts of teaching and learning. The COI database 
has been extremely productive for a variety of detailed analyses of instruc- 
tion in project classrooms, ranging from a study of discourse patterns (e.g., 
Williams & Baxter, in press) to case studies of groups of teachers and their 
instruction during the early years of the project (e.g., Brown & Rothschild, 
1993; Grover & Saulis, 1993; Smith & Seeley, 1993; Stein & Henningsen, 
1993). 

However, this qualitative database presented challenges to efforts aimed 
at producing a systematic overview of large numbers of project classrooms; 
words simply cannot be aggregated in the same way as numbers or check 
marks. The present investigation represents an initial effort to gain a big- 
picture view of project data. Through the use of a coding system, large 
amounts of qualitatively rich accounts of instruction were distilled into 
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quantitative data. This process of distillation has enabled us to step back 
from the rich, but cumbersome, data and to begin to examine the types of 
patterns that emerged. These patterns have, in turn, provided useful, 
empirically generated insights regarding the successes and challenges of 
implementing mathematics reform in the classroom. 

Notes 

Preparation of this manuscript was supported by a grant from the Ford Foundation 
(Grant Number 890-0572) for the QUASAR Project. It is a revised version of a paper that 
was presented as part of a symposium, entitled "Mathematics Instructional Innovation in 
Urban Middle Schools: Implementation and Impact in the QUASAR Project, 1990-1993," 
at the Annual Meeting of the American Educational Research Association, New Orleans, 
1994. Any opinions expressed herein are those of the authors and do not necessarily 
represent the views of the Ford Foundation. The authors would like to thank Ray St. Pierre 
for his help in coding the data and Gay Kowal, QUASAR data manager, for her assistance 
with the data management and analysis aspects of the study. The authors also acknowl- 
edge the helpful comments of Edward Silver on an earlier draft of this manuscript. 

'It is important to recognize that current recommendations for the reform of 
mathematics instruction are not built on a strong base of empirical evidence linking such 
instruction with the desired student outcomes. The mathematics education research 
community has few descriptions of reform mathematics classrooms that include informa- 
tion on both instruction and learning outcomes (Hiebert & Wearne, 1993). 

2QUASAR (Quantitative Understanding: Amplifying Student Achievement and Rea- 
soning) is based at the Learning Research and Development Center at the University of 
Pittsburgh and is directed by Edward A. Silver. 

3The academic task literature, to our knowledge, does not include a discussion of how 
to determine boundaries between tasks. From reading the work, however, we infer that 
researchers in this area segment the lesson into many more, smaller tasks than we do. It 
should be noted that our conception of mathematical task is definitely different from how 
the term task is used in the area of mathematics performance assessment. In that area, 
the term task is used to refer to a single mathematical problem. 

4The instruction in the three teachers' classrooms who were selected for observation 
was representative of reform instruction in general at that site in the following ways: (a) 
only teachers of heterogeneously grouped students were selected; (b) the selected 
teachers were instructed to identify for observation a class that was typical with respect 
to the perceived ability levels of the students; and (c) each year, the majority of teachers 
selected for observation taught at the target grade level-i.e., the grade at which most of 
the project's staff development and program development efforts were being placed. 
Thus, during the first project year, sixth grade teachers were observed; during the second 
year, mostly seventh grade teachers were observed; and, during the third year, mostly 
eighth grade teachers were observed. 

I The initial draft of the COI drew from two main sources: NCTM's Professional 
Standards for Teaching School Mathematics (1991) and a classroom observation system 
used for the state of California study of elementary mathematics (Cohen, Peterson, Wilson, 
Ball, Putnam, Prawat, Heaton, Remillard, & Wiemers, 1990). The COI was pilot-tested in 
several middle-school mathematics classrooms and underwent several rounds of critique 
and revision. 

'The purpose of selecting these stratification dimensions was to maximize the 
representativeness and independence of the selected tasks. The nature and characteristics 
of the tasks and the way in which they were implemented might change from the first 
to the third year of the project, might differ from site to site, and from teacher to teacher. 
In addition, the limited human resources available to code the data required that the 
sample size be constrained to about one fourth the full database. Consequently, it was 
important that the sample include tasks that would provide equal representation on each 
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of the three dimensions and that approximately one fourth of the database be selected 
in a manner that would preserve representativeness and independence of tasks. The 
decision to maintain task independence was necessary, given that the overall purpose of 
the present study was to characterize instruction in project classrooms by using a 
representative sample of tasks. The authors acknowledge that, in other contexts, thinking 
about the ways in which tasks relate to and build on one another may be desirable. 

7Since it was likely that there would be some coherence to the instructional activities 
implemented during the three consecutive observed lessons of any one teacher, coding 
tasks in only two of the three lessons would minimize bias. 

"8It would be likely that Tasks A and B within a given lesson would not be totally 
independent of each other; hence, we decided to sample only one task from each lesson. 

"9The basis for these inferences varied. For questions about multiple solutions and 
multiple representations, we looked for evidence across the entire class that students used 
a variety of solution strategies/representations or that multiple strategies/representations 
were publicly displayed (e.g., in successive presentations of solutions strategies at the 
overhead projector). For the communication and cognitive demand questions, coders 
were instructed to make inferences based on what the majority of students appeared to 
be doing. Were the majority of students producing explanations? Were the majority of 
students engaging with the task at a high level? 

1oBy context of the task, we refer to whether an attempt was made to have the task 
relate to "real-life" situations (e.g., using football fields to discuss measurement concepts) 
or whether the task dealt solely with abstract mathematics. We are aware that the 
distinction between real-life and abstract contexts is complicated and is currently the 
object of some debate within the mathematics education community. Our distinction does 
not pretend to attend to some of the more subtle dimensions involved in deciding whether 
or not a task is real life but, rather, takes at face value whether or not real-life objects are 
part of the task. 

"1Single-Symbols only refers to representations that are composed entirely of numer- 
als, mathematical symbols, and mathematical notation. Single-Non-Symbolic refers to 
representations that are either entirely nonsymbolic (most often manipulatives, diagrams, 
or pictures) or to representations that incorporate both symbols and nonsymbols. 
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